Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.497
Filtrar
1.
World J Microbiol Biotechnol ; 40(6): 177, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656467

RESUMO

During the COVID-19 pandemic, the occurrence of carbapenem-resistant Klebsiella pneumoniae increased in human clinical settings worldwide. Impacted by this increase, international high-risk clones harboring carbapenemase-encoding genes have been circulating in different sources, including the environment. The blaKPC gene is the most commonly disseminated carbapenemase-encoding gene worldwide, whose transmission is carried out by different mobile genetic elements. In this study, blaKPC-2-positive Klebsiella pneumoniae complex strains were isolated from different anthropogenically affected aquatic ecosystems and characterized using phenotypic, molecular, and genomic methods. K. pneumoniae complex strains exhibited multidrug-resistant and extensively drug-resistant profiles, spotlighting the resistance to carbapenems, ceftazidime-avibactam, colistin, and tigecycline, which are recognized as last-line antimicrobial treatment options. Molecular analysis showed the presence of several antimicrobial resistance, virulence, and metal tolerance genes. In-depth analysis showed that the blaKPC-2 gene was associated with three different Tn4401 isoforms (i.e., Tn4401a, Tn4401b, and Tn4401i) and NTEKPC elements. Different plasmid replicons were detected and a conjugative IncN-pST15 plasmid harboring the blaKPC-2 gene associated with Tn4401i was highlighted. K. pneumoniae complex strains belonging to international high-risk (e.g., ST11 and ST340) and unusual clones (e.g., ST323, ST526, and ST4216) previously linked to clinical settings. In this context, some clones were reported for the first time in the environmental sector. Therefore, these findings evidence the occurrence of carbapenemase-producing K. pneumoniae complex strains in aquatic ecosystems and contribute to the monitoring of carbapenem resistance worldwide.


Assuntos
Antibacterianos , Variação Genética , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Klebsiella/microbiologia , Ecossistema , Carbapenêmicos/farmacologia , Microbiologia da Água , Elementos de DNA Transponíveis
2.
BMC Genomics ; 25(1): 408, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664636

RESUMO

BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.


Assuntos
Proteínas de Bactérias , Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Carbapenêmicos/farmacologia , Humanos , Sequenciamento Completo do Genoma , Genoma Bacteriano , beta-Lactamases/genética , Antibacterianos/farmacologia , Filogenia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622558

RESUMO

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , Reação em Cadeia da Polimerase em Tempo Real , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
4.
J Korean Med Sci ; 39(14): e132, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622938

RESUMO

BACKGROUND: Nationwide research on the association between carbapenem-resistant Enterobacterales (CREs) and antibiotic use is limited. METHODS: This nested case-control study analyzed Korean National Health Insurance claims data from April 2017 to April 2019. Based on the occurrence of CRE, hospitalized patients aged ≥ 18 years were classified into CRE (cases) and control groups. Propensity scores based on age, sex, modified Charlson comorbidity score, insurance type, long-term care facility, intensive care unit stay, and acquisition of vancomycin-resistant Enterococci were used to match the case and control groups (1:3). RESULTS: After matching, the study included 6,476 participants (1,619 cases and 4,857 controls). Multivariable logistic regression analysis revealed that the utilization of broad-spectrum antibiotics, such as piperacillin/tazobactam (adjusted odds ratio [aOR], 2.178; 95% confidence interval [CI], 1.829-2.594), third/fourth generation cephalosporins (aOR, 1.764; 95% CI, 1.514-2.056), and carbapenems (aOR, 1.775; 95% CI, 1.454-2.165), as well as the presence of comorbidities (diabetes [aOR, 1.237; 95% CI, 1.061-1.443], hemiplegia or paraplegia [aOR, 1.370; 95% CI, 1.119-1.679], kidney disease [aOR, 1.312; 95% CI, 1.105-1.559], and liver disease [aOR, 1.431; 95% CI, 1.073-1.908]), were significantly associated with the development of CRE. Additionally, the CRE group had higher mortality (8.33 vs. 3.32 incidence rate per 100 person-months, P < 0.001) and a total cost of healthcare utilization per person-month (15,325,491 ± 23,587,378 vs. 5,263,373 ± 14,070,118 KRW, P < 0.001) than the control group. CONCLUSION: The utilization of broad-spectrum antibiotics and the presence of comorbidities are associated with increasing development of CRE. This study emphasizes the importance of antimicrobial stewardship in reducing broad-spectrum antibiotic use and CRE disease burden in Korea.


Assuntos
Infecções por Enterobacteriaceae , Humanos , Estudos de Casos e Controles , Pontuação de Propensão , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , República da Coreia/epidemiologia
5.
BMC Infect Dis ; 24(1): 433, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654215

RESUMO

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, necessitating the administration of polymyxin E (colistin) as a last-line antibiotic. Meanwhile, the mortality rate associated with colistin-resistant K. pneumoniae infections is seriously increasing. On the other hand, importance of administration of carbapenems in promoting colistin resistance in K. pneumoniae is unknown. CASE PRESENTATION: We report a case of K. pneumoniae-related pyogenic liver abscess in which susceptible K. pneumoniae transformed into carbapenem- and colistin-resistant K. pneumoniae during treatment with imipenem. The case of pyogenic liver abscess was a 50-year-old man with diabetes and liver transplant who was admitted to Abu Ali Sina Hospital in Shiraz. The K. pneumoniae isolate responsible for community-acquired pyogenic liver abscess was isolated and identified. The K. pneumoniae isolate was sensitive to all tested antibiotics except ampicillin in the antimicrobial susceptibility test and was identified as a non-K1/K2 classical K. pneumoniae (cKp) strain. Multilocus sequence typing (MLST) identified the isolate as sequence type 54 (ST54). Based on the patient's request, he was discharged to continue treatment at another center. After two months, he was readmitted due to fever and progressive constitutional symptoms. During treatment with imipenem, the strain acquired blaOXA-48 and showed resistance to carbapenems and was identified as a multidrug resistant (MDR) strain. The minimum inhibitory concentration (MIC) test for colistin was performed by broth microdilution method and the strain was sensitive to colistin (MIC < 2 µg/mL). Meanwhile, on blood agar, the colonies had a sticky consistency and adhered to the culture medium (sticky mucoviscous colonies). Quantitative real-time PCR and biofilm formation assay revealed that the CRKP strain increased capsule wzi gene expression and produced slime in response to imipenem. Finally, K. pneumoniae-related pyogenic liver abscess with resistance to a wide range of antibiotics, including the last-line antibiotics colistin and tigecycline, led to sepsis and death. CONCLUSIONS: Based on this information, can we have a theoretical hypothesis that imipenem is a promoter of resistance to carbapenems and colistin in K. pneumoniae? This needs more attention.


Assuntos
Antibacterianos , Carbapenêmicos , Colistina , Infecções por Klebsiella , Klebsiella pneumoniae , Abscesso Hepático Piogênico , Testes de Sensibilidade Microbiana , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Masculino , Abscesso Hepático Piogênico/microbiologia , Abscesso Hepático Piogênico/tratamento farmacológico , Pessoa de Meia-Idade , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Tipagem de Sequências Multilocus , Imipenem/uso terapêutico , Imipenem/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética
6.
Antimicrob Resist Infect Control ; 13(1): 46, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659068

RESUMO

BACKGROUND: Colonization of carbapenem-resistant Enterobacterale (CRE) is considered as one of vital preconditions for infection, with corresponding high morbidity and mortality. It is important to construct a reliable prediction model for those CRE carriers with high risk of infection. METHODS: A retrospective cohort study was conducted in two Chinese tertiary hospitals for patients with CRE colonization from 2011 to 2021. Univariable analysis and the Fine-Gray sub-distribution hazard model were utilized to identify potential predictors for CRE-colonized infection, while death was the competing event. A nomogram was established to predict 30-day and 60-day risk of CRE-colonized infection. RESULTS: 879 eligible patients were enrolled in our study and divided into training (n = 761) and validation (n = 118) group, respectively. There were 196 (25.8%) patients suffered from subsequent CRE infection. The median duration of subsequent infection after identification of CRE colonization was 20 (interquartile range [IQR], 14-32) days. Multisite colonization, polymicrobial colonization, catheterization and receiving albumin after colonization, concomitant respiratory diseases, receiving carbapenems and antimicrobial combination therapy before CRE colonization within 90 days were included in final model. Model discrimination and calibration were acceptable for predicting the probability of 60-day CRE-colonized infection in both training (area under the curve [AUC], 74.7) and validation dataset (AUC, 81.1). Decision-curve analysis revealed a significantly better net benefit in current model. Our prediction model is freely available online at https://ken-zheng.shinyapps.io/PredictingModelofCREcolonizedInfection/ . CONCLUSIONS: Our nomogram has a good predictive performance and could contribute to early identification of CRE carriers with a high-risk of subsequent infection, although external validation would be required.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Humanos , Estudos Retrospectivos , Masculino , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Pessoa de Meia-Idade , Feminino , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Idoso , Nomogramas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Fatores de Risco , China/epidemiologia , Medição de Risco , Adulto , Centros de Atenção Terciária
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 391-396, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645859

RESUMO

Objective: To investigate the clinical characteristics and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from patients with bloodstream infections in a large tertiary-care general hospital in Southwest China. Methods: A total of 131 strains of non-repeating CRKP were collected from the blood cultures of patients who had bloodstream infections in 2015-2019. The strains were identified by VITEK-2, a fully automated microbial analyzer, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The minimum inhibitory concentration (MIC) was determined by microbroth dilution method. The common carbapenemase resistant genes and virulence factors were identified by PCR. Homology analysis was performed by multilocus sequencing typing. Whole genome sequencing was performed to analyze the genomic characteristics of CRKP without carbapenemase. Results: The 131 strains of CRKP showed resistance to common antibiotics, except for polymyxin B (1.6% resistance rate) and tigacycline (8.0% resistance rate). A total of 105 (80.2%) CRKP strains carried the Klebsiella pneumoniae carbapenemase (KPC) resistance gene, 15 (11.4%) strains carried the New Delhi Metallo-ß-lactamase (NDM) gene, and 4 (3.1%) isolates carried both KPC and NDM genes. Sequence typing (ST) 11 (74.0%) was the dominant sequence type. High detection rates for mrkD (96.2%), fimH (98.5%), entB (100%), and other virulence genes were reported. One hypervirulent CRKP strain was detected. The seven strains of CRKP that did not produce carbapenemase were shown to carry ESBL or AmpC genes and had anomalies in membrane porins OMPK35 and OMPK36, according to whole genome sequencing. Conclusion: In a large-scale tertiary-care general hospital, CRKP mainly carries the KPC gene, has a high drug resistance rate to a variety of antibiotics, and possesses multiple virulence genes. Attention should be paid to CRKP strains with high virulence.


Assuntos
Proteínas de Bactérias , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Fatores de Virulência , beta-Lactamases , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , China/epidemiologia , Carbapenêmicos/farmacologia , Fatores de Virulência/genética , Antibacterianos/farmacologia , Virulência/genética , Masculino , Feminino , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Pessoa de Meia-Idade , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Sequenciamento Completo do Genoma/métodos
8.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667187

RESUMO

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Carbapenêmicos , Endodesoxirribonucleases , beta-Lactamases , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Técnicas Biossensoriais , Farmacorresistência Bacteriana/genética
9.
Intern Med J ; 54(4): 535-544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584572

RESUMO

Carbapenemase-producing gram-negative bacteria (CP-GNB) infections threaten public health with high mortality, morbidity and treatment costs. Although frequencies remain low in Australia (total number of CP-GNB infections reported was 907 in 2022), blaIMP-4 has established low levels of endemicity in many states. Imipenemase metallo-ß-lactamase types alone accounted for more than half of all carbapenemases in carbapenemase-producing Enterobacterales isolates in Australia, particularly in Enterobacter cloacae complex. New Delhi metallo-ß-lactamase constitutes almost 25% of all carbapenemases in Australia and was identified predominantly in Escherichia coli. The OXA-48-like carbapenemases include almost 10% of all carbapenemases and are mainly seen in Klebsiella pneumoniae and E. coli. Although K. pneumoniae carbapenemase-type carbapenemases are rare in Australia, some local outbreaks have occurred. Most carbapenem-resistant (CR) Pseudomonas aeruginosa strains in Australia do not produce carbapenemases. Finally, OXA-23-like carbapenemases are overwhelmingly positive in CR-Acinetobacter baumannii strains in Australia. Treatment of CR-GNB infections challenges physicians. Of 10 new antibiotics active against at least some CR-GNB infections that are approved by the US Food and Drug Administration, just three are approved for use in Australia. In this context, there is still an unmet need for novel antibacterials that can be used for the treatment of CR-GNB infections in Australia, as well as a pressing requirement for new mechanisms to 'de-link' antibiotic sales from their availability. In this narrative review, we aim to overview the epidemiology and clinical significance of carbapenem resistance in Australia as it pertains to Enterobacterales, P. aeruginosa and A. baumannii.


Assuntos
Proteínas de Bactérias , Relevância Clínica , Escherichia coli , Humanos , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Testes de Sensibilidade Microbiana
10.
J Infect Dev Ctries ; 18(3): 383-390, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635605

RESUMO

INTRODUCTION: The spread of Carbapenemase-producing Enterobacterales (CPEs) has become a significant concern in Algeria, with limited data available on their presence in community settings. This research investigated the resistance mechanisms of carbapenem-resistant Enterobacterales (CREs) collected from hospitals and the community in Skikda city, Algeria, between December 2020 and June 2022. METHODOLOGY: The study collected Enterobacterales strains resistant to ertapenem from inpatient and outpatient populations. An automated system was used for identification and antibiotic susceptibility testing. ß-lactamase production was evaluated through phenotypic tests and confirmed by standard PCR. Lastly, the carbapenemase genes were sequenced using the Sanger method. RESULTS: 17 CRE were isolated, with 9 from inpatients and 8 from outpatients. These isolates belonged to four species: Klebsiella pneumoniae (n = 8), Escherichia coli (n = 6), Enterobacter cloacae (n = 1), and Proteus mirabilis (n = 1). Of 15 CPEs, 11 were extended-spectrum ß-lactamases (ESBLs) positive, 5 were plasmid-mediated cephalosporinase (AmpC) positive, and 1 harbored all three ß-lactamases. All metallo-ß-lactamase-producing strains carried the New Delhi metallo-beta-lactamase gene (blaNDM), including 5 NDM-1 and 7 NDM-5 variants. The presence of blaOXA-48 and blaOXA-244 was observed in one outpatient strain each. NDM was associated with Cefotaximase Munich (CTX-M) ESBL in 8 isolates, while Cephamycinase (CMY) was detected in 3 NDM-5-producing E. coli. CONCLUSIONS: This research highlights the rising prevalence of carbapenemases NDM-1 and NDM-5 among inpatients and outpatients and supports the notion that OXA-48 is becoming increasingly widespread beyond Algerian hospitals.


Assuntos
Escherichia coli , Pacientes Ambulatoriais , Humanos , Pacientes Internados , Antibacterianos/farmacologia , Argélia/epidemiologia , Prevalência , beta-Lactamases/genética , Proteínas de Bactérias/genética , Klebsiella pneumoniae/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
11.
Front Cell Infect Microbiol ; 14: 1345935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572315

RESUMO

Introduction: Bacterial resistance is a major threat to public health worldwide. To gain an understanding of the clinical infection distribution, drug resistance information, and genotype of CRE in Dongguan, China, as well as the resistance of relevant genotypes to CAZ-AVI, this research aims to improve drug resistance monitoring information in Dongguan and provide a reliable basis for the clinical control and treatment of CRE infection. Methods: VITEK-2 Compact automatic analyzer was utilized to identify 516 strains of CRE collected from January 2017 to June 2023. To determine drug sensitivity, the K-B method, E-test, and MIC methods were used. From June 2022 to June 2023, 80 CRE strains were selected, and GeneXpert Carba-R was used to detect and identify the genotype of the carbapenemase present in the collected CRE strains. An in-depth analysis was conducted on the CAZ-AVI in vitro drug sensitivity activity of various genotypes of CRE, and the results were statistically evaluated using SPSS 23.0 and WHONET 5.6 software. Results: This study identified 516 CRE strains, with the majority (70.16%) being K.pneumoniae, followed by E.coli (18.99%). Respiratory specimens had highest detection rate with 53.77% identified, whereas urine specimens had the second highest detection rate with 17.99%. From June 2022 to June 2023, 95% of the strains tested using the CRE GeneXpert Carba-R assay possessed carbapenemase genes, of which 32.5% were blaNDM strains and 61.25% blaKPC strains. The results showed that CRE strains containing blaKPC had a significantly higher rate of resistance to amikacin, cefepime, and aztreonam than those harboring blaNDM. Conclusions: The CRE strains isolated from Dongguan region demonstrated a high resistance rate to various antibiotics used in clinical practice but a low resistance rate to tigecycline. These strains produce Class A serine carbapenemases and Class B metals ß-lactamases, with the majority of them carrying blaNDM and blaKPC. Notably, CRE strains with blaKPC and blaNDM had significantly lower resistance rates to tigecycline. CAZ-AVI showed a good sensitivity rate with no resistance to CRE strains carrying blaKPC. Therefore, CAZ-AVI and tigecycline should be used as a guide for rational use of antibiotics in clinical practice to effectively treat CRE.


Assuntos
Compostos Azabicíclicos , Carbapenêmicos , Ceftazidima , Enterobacteriaceae , Enterobacteriaceae/genética , Carbapenêmicos/farmacologia , Tigeciclina/farmacologia , Sistemas de Distribuição no Hospital , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação de Medicamentos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Cefalosporinas/farmacologia , Klebsiella pneumoniae/genética , Genótipo , Testes de Sensibilidade Microbiana
12.
Curr Microbiol ; 81(6): 158, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658428

RESUMO

Enterobacter cloacae complex (ECC) widely exists in the hospital environment and is one of the important conditional pathogens of hospital-acquired infection. To investigate the distribution of integrons and carbapenem-resistant genes in clinical ECC, 70 isolates of ECC from non-sputum specimens were collected. Class 1 and class 2 integron integrase gene intI1 and intI2, as well as common carbapenem-resistant genes, blaKPC, blaVIM, blaIMP, blaNDM, blaGES, and blaOXA-23, were screened. Gene cassette arrays and common promoters of class 1 integron together with subtypes of carbapenem-resistant genes were determined by sequencing. Resistant rates to commonly used antimicrobial agents between class 1 integron-positive and integron-negative ECC isolates were analyzed. The whole-genome of blaNDM-7 harboring Enterobacter hormaechei was sequenced and the sequence around blaNDM-7 was analyzed. Twenty isolates were positive for intI1. Nineteen different antimicrobial-resistant gene cassettes and 11 different gene cassette arrays, including aadA22-lnuF, were detected in this study. Common promoters of class 1 integron PcH1, PcW, PcW-P2, and PcH2 were detected in 12, 4, 3, and 1 isolates, respectively. The rates of antimicrobial resistance of intI1-positive isolates were higher than those of intI1-negative isolates to clinical commonly used antimicrobial agents. Carbapenem-resistant genes blaKPC-2, blaNDM-1, blaNDM-2, and blaNDM-7 were detected in 2, 1, 1, and 1 isolates, respectively. blaNDM-7 was located between bleMBL and IS5. To the best of our knowledge, this study reported for the first time of blaNDM-7 in ECC isolate in China.


Assuntos
Antibacterianos , Carbapenêmicos , Enterobacter cloacae , Infecções por Enterobacteriaceae , Integrons , Integrons/genética , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/microbiologia , Enterobacter cloacae/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Humanos , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , China
13.
Gut Microbes ; 16(1): 2340486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659243

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is a significant threat to public health worldwide. The primary reservoir for CR-Kp is the intestinal tract. There, the bacterium is usually present at low density but can bloom following antibiotic treatment, mostly in hospital settings. The impact of disturbances in the intestinal environment on the fitness, survival, expansion, and drug susceptibility of this pathogen is not well-understood, yet it may be relevant to devise strategies to tackle CR-Kp colonization and infection. Here, we adopted an in vivo model to examine the transcriptional adaptation of a CR-Kp clinical isolate to immune activation in the intestine. We report that as early as 6 hours following host treatment with anti-CD3 antibody, CR-Kp underwent rapid transcriptional changes including downregulation of genes involved in sugar utilization and amino acid biosynthesis and upregulation of genes involved in amino acid uptake and catabolism, antibiotic resistance, and stress response. In agreement with these findings, treatment increased the concentration of oxidative species and amino acids in the mouse intestine. Genes encoding for proteins containing the domain of unknown function (DUF) 1471 were strongly upregulated, however their deletion did not impair CR-Kp fitness in vivo upon immune activation. Transcription factor enrichment analysis identified the global regulator cAMP-Receptor Protein, CRP, as a potential orchestrator of the observed transcriptional signature. In keeping with the recognized role of CRP in regulating utilization of alternative carbon sources, crp deletion in CR-Kp resulted in strongly impaired gut colonization, although this effect was not amplified by immune activation. Thus, following intestinal colonization, which occurs in a CRP-dependent manner, CR-Kp can rapidly respond to immune cues by implementing a well-defined and complex transcriptional program whose direct relevance toward bacterial fitness warrants further investigation. Additional analyses utilizing this model may identify key factors to tackle CR-Kp colonization of the intestine.


Assuntos
Antibacterianos , Intestinos , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Animais , Camundongos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/imunologia , Intestinos/microbiologia , Intestinos/imunologia , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Regulação Bacteriana da Expressão Gênica , Carbapenêmicos/farmacologia , Camundongos Endogâmicos C57BL , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Humanos
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 583-587, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660870

RESUMO

OBJECTIVE: To investigate distribution and drug resistance of pathogens of bloodstream infection in patients with hematological malignancies, in order to provide reference for clinical infection control and treatment. METHODS: The clinical information of blood culture patients in the hematology department of our hospital from January 2016 to December 2021 was reviewed. They were divided into transplantation group and non-transplantation group according to whether they had undergone hematopoietic stem cell transplantation. The types of pathogens and their drug resistance were analyzed. RESULTS: Two hundred and ninety-nine positive strains of pathogenic bacteria were detected. In the transplantation group, Gram-negative bacteria accounted for 68.5% (50/73), Gram-positive bacteria accounted for 6.8% (5/73), and fungi accounted for 24.7% (18/73). The resistance rate of Escherichia coli to the third-generation cephalosporins was 77.8%, and 11.5% to carbapenems. The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 50.0%, and 56.2% to carbapenems. In the non-transplantation group, Gram-negative bacteria accounted for 64.1% (145/226), Gram-positive bacteria accounted for 31.0% (70/226), and fungi accounted for 4.9% (11/226). Gram-positive bacteria were mainly Enterococcus faecium (6.6%, 15/226) and Coagulase-negative Staphylococci (6.2%, 14/226). The fungi were all Candida tropicalis. The resistance rate of Escherichia coli to the third-generation cephalosporins was 63.8%, and 10.3% to carbapenems. The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 46.3%, and 26.8% to carbapenems. CONCLUSION: The types of pathogenic bacteria in bloodstream infection in patients with hematological malignancies are varied. Gram-negative bacteria is the main pathogenic bacteria. The resistance of pathogenic bacteria to antibiotics is severe. Antibiotics should be used scientifically and reasonably according to the detection and resistance of pathogenic bacteria.


Assuntos
Antibacterianos , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/complicações , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Klebsiella pneumoniae/isolamento & purificação , Carbapenêmicos/farmacologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Cefalosporinas/farmacologia , Bacteriemia/microbiologia , Fungos
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 358-364, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660899

RESUMO

OBJECTIVES: To study the distribution, drug resistance, and biofilm characteristics of carbapenem-resistant Acinetobacter baumannii (CRAB) isolated from hospitalized children, providing a reference for the prevention and treatment of CRAB infections in hospitalized children. METHODS: Forty-eight CRAB strains isolated from January 2019 to December 2022 were classified into epidemic and sporadic strains using repetitive extragenic palindromic sequence-based polymerase chain reaction. The drug resistance, biofilm phenotypes, and gene carriage of these two types of strains were compared. RESULTS: Both the 22 epidemic strains and the 26 sporadic strains were producers of Class D carbapenemases or extended-spectrum ß-lactamases with downregulated outer membrane porins, harboring the VIM, OXA-23, and OXA-51 genes. The biofilm formation capability of the sporadic strains was stronger than that of the epidemic strains (P<0.05). Genes related to biofilm formation, including Bap, bfs, OmpA, CsuE, and intI1, were detected in both epidemic and sporadic strains, with a higher detection rate of the intI1 gene in epidemic strains (P<0.05). CONCLUSIONS: CRAB strains are colonized in the hospital, with sporadic strains having a stronger ability to form biofilms, suggesting the potential for forming new clonal transmissions in the hospital. Continuous monitoring of the epidemic trends of CRAB and early warning of the distribution of epidemic strains are necessary to reduce the risk of CRAB infections in hospitalized children.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Biofilmes , Carbapenêmicos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Biofilmes/efeitos dos fármacos , Carbapenêmicos/farmacologia , Humanos , Criança , Infecções por Acinetobacter/microbiologia , Pré-Escolar , beta-Lactamases/genética , Criança Hospitalizada , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Feminino , Lactente , Masculino , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
16.
World J Microbiol Biotechnol ; 40(6): 167, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630176

RESUMO

Carbapenem-resistant Acinetobacter baumannii poses a significant threat to public health globally, especially due to its ability to produce multiple carbapenemases, leading to treatment challenges. This study aimed to investigate the antibiotic resistance pattern of carbapenem-resistant A. baumannii isolates collected from different clinical settings in North East India, focusing on their genotypic and phenotypic resistance profiles. A total of 172 multidrug-resistant A. baumannii isolates were collected and subjected to antibiotic susceptibility test using the Kirby-Bauer disk diffusion method. Various phenotypic tests were performed to detect extended-spectrum ß-lactamase (ESBL), metallo-ß-lactamase (MBL), class C AmpC ß-lactamase (AmpC), and carbapenem hydrolyzing class D ß-lactamase (CHDL) production among the isolates. Overexpression of carbapenemase and cephalosporinase genes was detected among the isolates through both phenotypic and genotypic investigation. The antibiotic resistance profile of the isolates revealed that all were multidrug-resistant; 25% were extensively drug-resistant, 9.30% were pan-drug-resistant, whereas 91.27% were resistant to carbapenems. In the genotypic investigation, 80.81% of isolates were reported harbouring at least one metallo-ß-lactamase encoding gene, with blaNDM being the most prevalent at 70.34%, followed by blaIMP at 51.16% of isolates. Regarding class D carbapenemases, blaOXA-51 and blaOXA-23 genes were detected in all the tested isolates, while blaOXA-24, blaOXA-48, and blaOXA-58 were found in 15.11%, 6.97%, and 1.74% isolates respectively. Further analysis showed that 31.97% of isolates co-harboured ESBL, MBL, AmpC, and CHDL genes, while 31.39% of isolates co-harboured ESBL, MBL, and CHDL genes with or without ISAba1 leading to extensively drug-resistant or pan drug-resistant phenotypes. This study highlights the complex genetic profile and antimicrobial-resistant pattern of the isolates circulating in North East India, emphasizing the urgent need for effective infection control measures and the development of alternative treatment strategies to combat these challenging pathogens.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , beta-Lactamases/genética , Genótipo , Carbapenêmicos/farmacologia , Índia
17.
Front Public Health ; 12: 1376513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601497

RESUMO

Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application.


Assuntos
Carbapenêmicos , Infecções por Bactérias Gram-Negativas , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Unidades de Terapia Intensiva
18.
Front Cell Infect Microbiol ; 14: 1356353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601741

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to almost all antibiotics. Eravacycline, a newer treatment option, has the potential to treat CRAB infections, however, the mechanism by which CRAB isolates develop resistance to eravacycline has yet to be clarified. This study sought to investigate the features and mechanisms of eravacycline heteroresistance among CRAB clinical isolates. A total of 287 isolates were collected in China from 2020 to 2022. The minimum inhibitory concentration (MIC) of eravacycline and other clinically available agents against A. baumannii were determined using broth microdilution. The frequency of eravacycline heteroresistance was determined by population analysis profiling (PAP). Mutations and expression levels of resistance genes in heteroresistant isolates were determined by polymerase chain reaction (PCR) and quantitative real-time PCR (qRT-PCR), respectively. Antisense RNA silencing was used to validate the function of eravacycline heteroresistant candidate genes. Twenty-five eravacycline heteroresistant isolates (17.36%) were detected among 144 CRAB isolates with eravacycline MIC values ≤4 mg/L while no eravacycline heteroresistant strains were detected in carbapenem-susceptible A. baumannii (CSAB) isolates. All eravacycline heteroresistant strains contained OXA-23 carbapenemase and the predominant multilocus sequence typing (MLST) was ST208 (72%). Cross-resistance was observed between eravacycline, tigecycline, and levofloxacin in the resistant subpopulations. The addition of efflux pump inhibitors significantly reduced the eravacycline MIC in resistant subpopulations and weakened the formation of eravacycline heteroresistance in CRAB isolates. The expression levels of adeABC and adeRS were significantly higher in resistant subpopulations than in eravacycline heteroresistant parental strains (P < 0.05). An ISAba1 insertion in the adeS gene was identified in 40% (10/25) of the resistant subpopulations. Decreasing the expression of adeABC or adeRS by antisense RNA silencing significantly inhibited eravacycline heteroresistance. In conclusion, this study identified the emergence of eravacycline heteroresistance in CRAB isolates in China, which is associated with high expression of AdeABC and AdeRS.


Assuntos
Acinetobacter baumannii , Tetraciclinas , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , RNA Antissenso , China/epidemiologia , Testes de Sensibilidade Microbiana
19.
Genome Med ; 16(1): 57, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627827

RESUMO

BACKGROUND: Carbapenem-resistant Escherichia coli (CREC) has been considered as WHO priority pathogens, causing a great public health concern globally. While CREC from patients has been thoroughly investigated, the prevalence and underlying risks of CREC in healthy populations have been overlooked. Systematic research on the prevalence of CREC in healthy individuals was conducted here. We aimed to characterize CREC collected from healthy populations in China between 2020 and 2022 and to compare the genomes of CREC isolates isolated from healthy individuals and clinical patients. METHODS: We present a nationwide investigation of CREC isolates among healthy populations in China, employing robust molecular and genomic analyses. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatics were utilized to analyze a cohort of CREC isolates (n = 113) obtained from fecal samples of 5 064 healthy individuals. Representative plasmids were extracted for third-generation nanopore sequencing. We previously collected 113 non-duplicate CREC isolates (59 in 2018, 54 in 2020) collected from ICU patients in 15 provinces and municipalities in China, and these clinical isolates were used to compare with the isolates in this study. Furthermore, we employ comparative genomics approaches to elucidate molecular variations and potential correlations between clinical and non-clinical CREC isolates. RESULTS: A total of 147 CREC isolates were identified from 5 064 samples collected across 11 provinces in China. These isolates were classified into 64 known sequence types (STs), but no dominant STs were observed. In total, seven carbapenemase genes were detected with blaNDM-5 (n = 116) being the most prevalent one. Genetic environments and plasmid backbones of blaNDM were conserved in CREC isolated from healthy individuals. Furthermore, we compared clinical and healthy human-originated CRECs, revealing noteworthy distinctions in 23 resistance genes, including blaNDM-1, blaNDM-5, and blaKPC (χ2 test, p < 0.05). Clinical isolates contained more virulence factors associated with iron uptake, adhesion, and invasion than those obtained from healthy individuals. Notably, CREC isolates generally found healthy people are detected in hospitalized patients. CONCLUSIONS: Our findings underscore the significance of healthy populations-derived CRECs as a crucial reservoir of antibiotic resistance genes (ARGs). This highlights the need for ongoing monitoring of CREC isolates in healthy populations to accurately assess the potential risks posed by clinical CREC isolates.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Saúde Pública , Humanos , beta-Lactamases/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Genômica , Carbapenêmicos/farmacologia
20.
Open Vet J ; 14(1): 459-469, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633163

RESUMO

Background: eEscherichia coli (E. coli) bacteria that produce extended spectrum beta-lactamase (ESBL) is associated with a high prevalence of human illnesses worldwide. The emergence of resistance to carbapenem and colistin compounds poses further challenges to the treatment options for these illnesses. This study aimed to evaluate the phenotypic and genotypic pattern of resistance to carbapenem and colistin in ESBL-producing E. coli. Escherichia coli isolates collected from the respiratory tract of chickens in El-Sharkia government, Egypt. Methods: A total of 250 lung samples were collected from 50 poultry farms. These samples were then subjected to isolation, identification, and serotyping of E. coli. The presence of antimicrobial resistance was identified by disc diffusion testing. The occurrence of ESBL phenotypes was also assessed using the double disc synergy method. PCR/sequencing techniques were employed to examine the presence of ESBL (ß-lactamase (bla)-TEM, blaSHV, and blaCTX-M), colistin (mcr-1), and carbapenem (blaNDM, blaVIM, and blaKPC) resistance genes. Results: The findings revealed that 140 out of 250 (56%) were identified as E. coli. All E. coli isolates had a high level of multi-antimicrobial resistance (MAR) with an index value greater than 0.2, and 65.7% of them were confirmed to produce ESBL. Out of the 92 ESBL phenotypes, 55 (59.7%), 32 (34.7%), 18 (19.6%), and 37 (40.2%) isolates harbor b laTEM-3, b laSHV-4, b laCTX-M-1, a nd blaCTX-M-14 genes, respectively. The blaNDM-1 gene was identified in all 40 phenotypes that exhibited resistance to carbapenem, accounting for 28.5% of all strains of E. coli and 43.4% of ESBL isolates. The VIM and KPC genes were not detected in any of the samples. Furthermore, there was a significant prevalence of the mobilized colistin resistance (mcr)-1 gene, with 64 (69.5%) of the ESBL isolates exhibiting this gene. Conclusion: The prevalence of ESBL-producing E. coli, particularly those resistant to carbapenem and colistin, poses a significant public health risk in society.


Assuntos
Colistina , Infecções por Escherichia coli , Animais , Humanos , Colistina/farmacologia , Escherichia coli , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Aves Domésticas , Infecções por Escherichia coli/veterinária , Fazendas , Egito , Galinhas , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA